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Fig. 1: Our proposed method continuously estimates levels of cybersickness from (a) EEG signals and head motions in VR. (b) Our
multitaper-based approach extracts suitable representations from the EEG and inertial signals. (c) The two encoders in our neural
network take representations of EEG and inertial signals as input, respectively, to independently extract modality-specific features

from the spectral density before concatenating them to estimate a user’s sickness level.

Abstract— Virtual reality (VR) presents immersive opportunities across many applications, yet the inherent risk of developing
cybersickness during interaction can severely reduce enjoyment and platform adoption. Cybersickness is marked by symptoms such
as dizziness and nausea, which previous work primarily assessed via subjective post-immersion questionnaires and motion-restricted
controlled setups. In this paper, we investigate the dynamic nature of cybersickness while users experience and freely interact in VR.
We propose a novel method to continuously identify and quantitatively gauge cybersickness levels from users’ passively monitored
electroencephalography (EEG) and head motion signals. Our method estimates multitaper spectrums from EEG, integrating specialized
EEG processing techniques to counter motion artifacts, and, thus, tracks cybersickness levels in real-time. Unlike previous approaches,
our method requires no user-specific calibration or personalization for detecting cybersickness. Our work addresses the considerable
challenge of reproducibility and subjectivity in cybersickness research. In addition to our method’s implementation, we release our
dataset of 16 participants and approximately 2 hours of total recordings to spur future work in this domain.
Source code: https://github.com/eth-siplab/EEG_Cybersickness_Estimation_VR-Beyond_Subjectivity.

Index Terms—Cybersickness, Virtual reality, Electroencephalography

1 INTRODUCTION

Virtual reality (VR) provides immersive experiences that enable users
to engage in diverse activities, from entertainment to healthcare [53,57].
VR can simulate environments and scenarios with high fidelity, al-
lowing users to engage in activities that mimic real-world interac-
tions [6, 14]. From training simulations for medical professionals to
therapeutic interventions for patients with phobias or post-traumatic
stress disorder (PTSD), VR can effectively support experiential learning
and treatment [20, 38, 58].

While VR offers promising benefits across various fields, a signif-
icant obstacle is the prevalence of cybersickness among individuals.
The lack of means for cybersickness mitigation poses a barrier to the
widespread adoption and long-term usability of VR devices. Cyber-
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sickness can manifest as dizziness, nausea, stomach discomfort, and
burping, and can last up to a week [55]. As VR technologies continue
to advance, there is a need for effective methods to detect, monitor, and
not least prevent cybersickness from occurring to begin with. Thus,
continuously monitoring participants’ sickness levels is crucial for en-
hancing user experience and satisfaction but also for ensuring safety
and well-being in VR. By responding to changes in cybersickness levels
in real-time, interventions could promptly mitigate adverse effects.

Previous cybersickness studies often collected subjective measures
of cybersickness only after the VR immersion [5, 60]. Such approaches
cannot estimate the continuous and immediate changes in perceived
sickness levels, which would be crucial for facilitating interventions to
prevent symptoms of cybersickness from occurring [1]. Many existing
approaches, often stereo-image-based, further assume that the same
sequence of frames and sounds always induces the same effect on
different participants [35]. However, cybersickness remains highly
subjective, and individuals exhibit varying reactions in response to the
same frame sequence in VR [25, 47].

More sophisticated approaches have collected bio-physiological
measurements to estimate cybersickness [11, 27, 42] while restricting
participants’ movement within VR to minimize motion artifacts and
acquire clean biosignals [69]. They showed that the features extracted



from these measurements (e.g., electrodermal activity (EDA), heart
rate (HR), pupil size, and brain activity) correlate with participants’
reported cybersickness levels. Restricting motions is especially rele-
vant for recording clean EEG signals, which have shown promising
for cybersickness detection [35, 43]. Unfortunately, such movement
and interaction constraints are not representative of user behavior in
VR [66]. Therefore, there is a need for more robust approaches for
continuous cybersickness detection that work in the presence of motion.

In this paper, we first introduce a novel dataset of EEG recordings
from 16 participants during cycling simulations in VR. We then propose
a method for continuously estimating cybersickness levels in real time,
with minimal latency, enabling timely interventions without the need
for user-specific fine-tuning.

Our work underscores the importance of continuous monitoring of
cybersickness for optimizing the VR experience. To increase opportu-
nities of reproducibility and generalizability for future work, we release
the implementation of the method as well as our 16-participant dataset
for public access.

Contributions
In summary, we make the following contributions in this paper:
• a novel processing approach to extract meaningful features from

EEG signals to continuously estimate cybersickness in VR. Unlike
traditional methods, our modified multitaper-based method leverages
a superior spectral resolution and reduced variance while considering
the temporality in EEG, which allows it to accurately and reliably
predict cybersickness levels. We validated the energy and memory
efficiency of our approach on real hardware.

• an interpretation of the EEG power spectral density characteristics
with physiological markers commonly used in neurophysiology for
different levels of sickness. This demonstrates the insightful link
between the effect of cybersickness on brain activity and established
methods in neurophysiological research.

• an extensive evaluation of our method, including ablation studies
on a dataset of participants interacting in VR, accompanied by EEG
and head-motion recordings. Our method reaches or outperforms the
current state-of-the-art methods for detecting and estimating cyber-
sickness on the same dataset while reducing the required number of
input modalities.

• a public release of our dataset, method implementation, and evalua-
tion analysis. Our ablation study includes multiple models to support
future research and experimentation. Our dataset will facilitate repli-
cation and validation of our findings by the research community.

2 RELATED WORK

There is a large volume of published studies seeking the reasons and
detection of cybersickness in VR. Theories regarding cybersickness
include sensory conflict theory, poison theory, and postural instability
theory [9, 39]. While the existing literature is extensive and focuses
particularly on the sensory conflict theory which claims that pseudo-
motion-perception, perceived by human visual stimuli, is responsible
for cybersickness when the individual is stationary in reality, we review
a wide range of cybersickness research.

2.1 Stereo-image based sickness detection
Prior researchers have investigated the effectiveness of using stereo-
image datasets collected from videos to predict cybersickness [33, 49,
52]. For example, Padmanaban et al. [52] used 19 two-minute VR
videos with depth and optical flow features to predict cybersickness.
Later, 3D convolutional neural networks are proposed to detect sickness
with a multimodal deep fusion approach for optical flow, disparity, and
saliency features [30]. Similarly, Kim et al. [28], used a convolutional
auto-encoder [48] to predict cybersickness by utilizing reconstruction
error captured from exceptional motion videos. However, the videos
used in most of the prior research were pre-recorded and were rendered
using the HMDs, instead of allowing the participants to interact in
the VR simulations. For example, Kim et al. [32] used the KITTI

dataset [17], which are not VR videos. Padmanaban and Lee et al. used
pre-recorded short VR videos (1–2 minutes long), which also did not al-
low free locomotion and may not have included a long enough exposure
to introduce cybersickness [50,54]. Jin et al. [29] used five different VR
videos and allowed users to do different types of locomotion and 3D-
object manipulation and achieved a coefficient of determination (R2)
value of 86.8% in predicting cybersickness from the video features.

While the aforementioned methods achieved comparable results by
leveraging the sequences of frames from stereo-image datasets for pre-
dicting cybersickness, it is important to note that the designed models
are often computationally expensive and demanding. Especially, the
intricate architectures and processing requirements of neural networks
used in these approaches demand substantial computational resources,
hindering their practical utility for immediate cybersickness detec-
tion during VR experiences. This computational complexity poses
challenges in deploying these models for the real-time detection of
cybersickness. Considering this crucial limitation of previous works,
our proposed method is lightweight, as it does not rely on video data,
enabling its deployment in real-time scenarios for the prediction of cy-
bersickness. This capability facilitates timely interventions to mitigate
discomfort and adverse effects experienced by users.

2.2 Physiological signal-based sickness detection
Although stereo-image-based sickness detection methods yield compet-
itive results, they lack generalizability due to the fact that individuals
can exhibit different reactions to identical sequences of frames within
virtual environments [8]. In other words, a sequence of frames inducing
sickness in one person may stimulate no response in another. Hence,
recent studies have turned to bio-physiological measures for predicting
cybersickness [11, 26, 27] and showed that there is a significant cor-
relation between cybersickness and changes in the bio-physiological
signals. For example, researchers have identified a significant positive
correlation between cybersickness and HR and EEG delta waves, as
well as a negative correlation with EEG beta waves [36, 43]. Addi-
tionally, some studies reported that galvanic skin response (GSR) on
the forehead has a higher correlation with cybersickness and could
be used to predict cybersickness [16, 56, 70]. Similarly, heart rate
and GSR information are combined to predict cybersickness with an
accuracy of 87.38% using neural networks that were collected from
22 participants [23]. Also, Kim et al. collected 8-channel EEG data
from 200 participants immersed in 44 different VR simulations to de-
tect cybersickness [35]. Most of these cybersickness studies involving
physiological signals are confined to seated conditions with restricted
locomotion, aiming to mitigate motion artifacts and noise during data
collection [3, 24, 69]. This limitation is particularly significant for EEG
signals—one of the primary physiological signals for cybersickness
detection—given its exposure to sensory conflicts.

However, in this paper, we present a novel preprocessing step for
cybersickness detection designed to effectively eliminate noise and
motion artifacts from EEG signals. This preprocessing step allows for
the deployment of our proposed method in realistic VR environments
without restricting the motions of users. By addressing the challenge of
motion artifacts, our method enhances the reliability and accuracy of
cybersickness detection using physiological signals. Furthermore, our
approach contributes to bridging the gap between laboratory-based stud-
ies conducted under controlled conditions and real-world applications
where users have unrestricted movement within virtual environments.
This advancement marks a significant step towards the development of
practical and effective solutions for cybersickness detection using EEG
signals and mitigation in immersive experiences.

2.3 Motion-based sickness detection
Due to the limitations of the cybersickness prediction from stereoscopic
video and physiological signals, recent research has been focused on
predicting cybersickness from headsets using the eye-tracking, and
motion data [7, 13, 19, 22, 44]. For example, Chang et al. reported that
different eye features (e.g., fixation duration and distance between the
eye gaze and the object position sequence) are highly correlated when
the participants felt cybersickness and proposed and support vector



(a) An example of VR scene for users
while going front

(b) The side view of the scene to have
continuity during VR immersion

Fig. 2: The example views from the designed virtual environments with
front (Figure 2a) and side (Figure 2b).

machine (SVM) regression for cybersickness prediction [7]. Similarly,
Lopes et al. [44] reported that pupil position and eye-blink rate between
the sickness group and the non-sickness groups were significantly dif-
ferent. There is also a large volume of published studies describing the
role of using head-tracking and postural data for cybersickness predic-
tion [2, 13, 54, 67]. In addition to using objective measurements (i.e.,
biophysiological signals, stereoscopic video, inertial measurements)
for cybersickness studies, researchers often use subjective measures to
detect cybersickness severity. The most commonly used cybersickness
subjective measures are simulator sickness questionnaire (SSQ) [55].
However, several researchers have argued that cybersickness is different
from simulator sickness [5, 60] and proposed cybersickness susceptibil-
ity questionnaire [15] and virtual reality sickness questionnaire [34] for
subjective measurement of cybersickness. Yet, these subjective mea-
sures are often collected after the VR immersion. Therefore they do
not provide sufficient granular understanding of cybersickness severity
during VR immersion.

Thus, in this paper, we employed a setup that allowed for continuous
reporting of sickness levels through a joystick controller, similar to [42].
We also present a novel approach for cybersickness prediction from the
EEG signals using a tailored preprocessing technique for the VR envi-
ronments, which allowed us to use EEG signals under noisy conditions.
We had significant detection accuracy by using the proposed approach,
which we believe can be used to develop a standalone cybersickness
prediction framework. More importantly, our proposed method can
continuously estimate and follow the degree of cybersickness level of
users in the virtual environment instead of waiting for minutes to get a
response from the users.

3 DATA COLLECTION

3.1 Virtual Environments

We designed the virtual environment (see Figure 2 for an example)
for cybersickness detection using Unity 3D to maximize a realistic
VR immersion for accurate data collection. The user interfaces (UIs)
were strategically positioned based on participants’ height and arm
length to optimize usability. To enhance participants’ sense of agency,
we simplified their hand and controller representations to be transpar-
ent white spheres. Before each session, participants confirmed the
alignment of virtual representations with their physical movements,
ensuring calibration accuracy. Importantly, the virtual environment’s
elements and objects were synchronized with the EEG headset, guaran-
teeing consistency and sustained tracking accuracy across experimental
conditions.

3.2 Apparatus

Our study provides participants with an immersive experience using
the Quest 2 virtual reality device, powered by a standard PC. We
have also used HTC Vive Pro Eye in our ablation studies to show the
performance in different VR hardwares. To ensure accurate and reliable
data collection for EEG signals, participants were also connected to the
DSI 24 EEG, a commercially available system that uses dry electrodes.
This EEG system is fully compatible with our setup, ensuring good
synchronization between the signals from the virtual reality headset.

3.3 Participants
We recruited 16 participants (6 female, 10 male) with ages ranging
from 26 to 37 (M=25, SD=5.3) where the data were collected using an
Institutional Review Board (IRB)-approved protocol. We obtained writ-
ten informed consent from all participants while the study adhered to
the standard of the Declaration of Helsinki. Each participant was asked
to perform two experiments, after which they filled out a questionnaire,
and when finished, they were given an $8 gift coupon. None of the
participants had a history of severe motion sickness or cybersickness,
indicating a low susceptibility. Moreover, individuals with photosen-
sitive epilepsy were excluded from the study. During the experiment,
participants were immersed in a virtual reality cycling simulation. The
virtual bicycle’s speed was set to simulate a pace of 15 miles per second,
similar to real-world speed. At the beginning of the experiment, we
also asked each participant whether the speed felt unrealistic (either too
fast or too slow), but none expressed a desire to make any adjustments.
The handlebar grip in the virtual environment was modeled at 40 cm
in length, with the handlebar height adjusted to 100 cm to simulate
a realistic cycling posture, ensuring participants felt as if they were
on a real bicycle while maintaining ergonomic comfort. We also let
participants move their heads freely in the VR environment during
cycling, which allows the user to perform the task in various positions
such as moving forward in the environment while looking forward or
sideways.

3.4 Data Collection Procedure
The study comprised two sessions conducted on the same day. The ex-
perimenter briefed participants about the study’s purpose and procedure
in the first session. Then, the participants underwent calibration of the
eye-tracker process by the manufacturer. The calibration involved fol-
lowing dots in the VR headset with the eyes for 30 seconds. Participants
relaxed in VR for two minutes, first in an empty virtual environment (a
minute) and then in the virtual environment of the experiment without
any movements or interaction. The first session, lasting 35 minutes
with two breaks of five to 10 minutes each, was followed by exposure
to the second session for an additional 20 minutes. After the session,
participants were asked to relax for at least 15 minutes during the study,
and the experimenter reminded them not to operate machinery or drive
a car within the subsequent hours.

3.4.1 Joystick Controller
Different controllers were employed in VR environments [42, 44] to
measure patients’ cybersickness levels in their study. This unobtru-
sive method allowed participants to easily report the intensity of their
symptoms during gameplay without being distracted, minimizing in-
terference with the virtual experience. During our experiments, we
followed a similar setup to [42] that allowed for continuous reporting of
sickness levels. Specifically, the level of motion sickness was continu-
ously reported by each subject using a joystick with a scale that ranged
from 0 to 1, with discrete values of 0.1. The subjects were asked to raise
or lower the scale whenever they felt more or less sickness, respectively.
The scale was not shown to the subjects during the experiments to avoid
any feedback loop. Three participants involved in the experiments did
not indicate any degree of sickness on either joystick feedback and
SSQ responses. At the end of the experiments, the sickness values were
verified using the SSQ and correlated.

Using the joystick controller, we continuously obtain each partici-
pant’s real-time sickness levels. An important advantage of this setup
is that it shows variations in sickness levels among participants, even
when they observe the same sequence of frames in VR. This obser-
vation presents a major drawback for previous works that attempt to
detect cybersickness solely based on visual frames, as they overlook
individual differences in how participants experience sickness, even
when viewing the same content.

Second, obtaning real-time sickness levels allows us to observe
sudden changes in physiological signals. For example, we observed
that when participants changed the joystick level twice, it resulted in
a notable increase in sickness level, whereas a single-level change
had a comparatively lesser impact. Therefore, we encode participants’



responses to ensure that their cybersickness severity remains consistent
between consecutive segments if the change in response value is less
than 10%, corresponding to a single-level shift.

This observation and threshold were further verified through the
SSQ, where it was found that a single-level change did not induce any
level of sickness among the participants. It is also important to note
that everyone’s perception of sickness level differs; in other words, the
response values are relative to each individual. Therefore, this thresh-
olding approach is to find the relative differences between responses
while accounting for the inherent subjectivity in how participants expe-
rience and express cybersickness.

4 METHOD FOR CONTINUOUSLY ESTIMATING CYBERSICKNESS

4.1 Pre-processing
We use the EEG signals from the DSI-24 and inertial measurements
from the VR device to detect cybersickness. Before, preprocessing the
signals, we segmented them in 3-second windows without overlap. We
employed a 3-second window to achieve a balance: longer windows
might overlook sudden changes [51] in brain signals [4,45], and shorter
ones would increase processing overhead without us observing a perfor-
mance improvement with better temporal resolution. We also evaluated
the performance with 2- and 4-second window lengths, but observed no
significant improvements. We, then, process the EEG data to eliminate
noise and artifacts. First, we resample it from 300 Hz to 100 Hz using
an FIR antialiasing lowpass filter. We, then use a fourth-order band-
pass Butterworth filter with a 1–40 Hz cut-off frequency for denoising.
Lastly, we implement a notch filter at 50 Hz with a quality factor of five
to eliminate power line interference from the recordings.

4.2 Modified Multitaper Spectrum Estimation
After preprocessing, we applied a modified multitaper method tailored
for cybersickness detection to compute the power spectral density
(PSD) of EEG signals in the range of 0.5 Hz to 40 Hz, which we out-
line in Section 4.2.1. Generally, the multitaper method outperforms
periodogram techniques like Welch [65] for estimating the PSD of
EEG signals as it diminishes temporal variability, ensuring a consistent
spectrum estimation [63]. Additionally, the multitaper method averages
modified periodograms obtained through mutually orthogonal tapers,
which helps to reduc non-stationary noise in EEG signals that might
occure when participants move in VR.

Before explaning our tailored multitaper PSD estimation (Sec-
tion 4.2.1), we first provide a derivation of the standard multitaper PSD
estimation for completeness, and notational consistency. Multitaper
spectral density estimation provides better spectrum than the widely
applied short-time Fourier transform methods thanks to the discrete
prolate Slepian sequences [59] (DPSS). The DPSS arise from the
following spectral concentration problem. Obtaining the discrete
time Fourier transform (DTFT) (X( f )) of a finite time series x[n], for
which a sequence maximizes the ratio given in Equation 1, subject
to the constraint that the sequence has finite power (Equation 2).

λ =

W∫
−W

∣∣X( f )
∣∣2d f

Fs/2∫
−Fs/2

∣∣X( f )
∣∣2d f

(1)

Fs/2∫
−Fs/2

∣∣X( f )
∣∣2d f < ∞, (2)

where Fs is the sampling rate of the signal x[n] and W is the interested
frequency range. This ratio determines an index-limited sequence with
the largest proportion of its energy in the frequency band [–W,W ]
where it leads to the eigenvalue problem given in Equation 3.

N−1

∑
m=0

sin(2πW (n−m))

π(n−m)
gk(m) = λk(N,W )gk(n), (3)

where λk is the eigenvalues, and gk(n) is the DPSS values that cor-
respond to kth Slepian sequence. The eigenvectors of this equation,
gk(n), are the DPSS values, which are mutually orthogonal to each
other. After obtaining DPSS values, the periodograms are calculated in

1.0 .6

Time (min)

.75

.50

.25

.0

Sickness
level

Total acc.
in g (x3)

1/f of PSD

.2

.0

.4

100
(a) An example of a user who experi-

ences severe cybersickness during
VR immersion

Sickness level
1.0 .6

Time (min)

.75

.50

.25

.0

Sickness level
Total acc.
in g (x3)

1/f of PSD

.2

.0

.4

100
(b) An example of a user who does not

experience cybersickness during VR
immersion

Fig. 3: The plots illustrate the continuous variation in cybersickness lev-
els (blue line; secondary y-axis) within the VR environment, showing a
low correlation with head motion, as represented by the total accelera-
tion (gray line; primary y-axis). The maximum value of sickness level
changes from 0.1 to 0.85 between people. Figure 3b shows the temporal
changes in sickness level for a participant during the experiment.

Equation 4 using a different Slepian sequence for each window, where
we set the frequency resolution to 1 Hz.

Sk( f ) = ∆t
∣∣∣∣N−1

∑
n=0

gk(n)x(n)e
− j2π f n∆t

∣∣∣∣2 (4)

Here Sk( f ) is the specific periodograms, each obtained using a different
Slepian sequence (gk(n)). Finally, the multitaper PSD estimate is
calculated, by averaging all the periodograms using Equation 5.

S( f ) =
1
K

K−1

∑
k=0

Sk( f ) (5)

4.2.1 Temporal-relative PSD
The multitaper method is primarily designed for stationary random
processes [63], which limits the duration of the analysis window for
cybersickness. Given that cybersickness can change abruptly in a VR
environment [31], applying the multitaper method to longer time frames
becomes impractical due to the non-stationary nature of the process.
To address this, we compute the PSD in 3-second windows and then
calculate the difference between the current PSD and the average PSD
of the initial three segments. Our method, which we term temporal-
relative PSD, allows for detection of sudden changes in cybersickness
while considering the temporal changes in EEG.

Our approach enables the model to learn the changes over time rather
than focusing on absolute values, which hold little significance in the
context of cybersickness while changing from subjects to subjects [18].
Moreover, since the multitaper calculation window is 3-seconds, it also
enables us to calculate PSD without violating the stationary condition.
In our ablation study, we also compare our proposed temporal-relative
PSD estimation (TR-PSD) with the standard PSD estimation method
outlined above.

4.2.2 Spectral slope as a correlate of cybersickness
To demonstrate the continuous temporal changes in EEG signals dur-
ing cybersickness in VR environments, we investigated the 1/f spectral
slope [12,40] and, for the first time, established its link to cybersickness.
The 1/f spectral slope, which we will simply refer to as 1/f, describes
the change of frequency power in the band of 30 Hz to 45 Hz assessed
via the slope of a regression line fitted to the PSD on a log-log scale
from 30–45 Hz (see [40] for further details). Studies have demonstrated
that 1/f reflects the non-oscillatory, scale-free component of neural
activity and effectively distinguishes wakefulness from diminished



arousal levels [40]. We investigated the evolution of 1/f throughout
participants’interaction in VR. As hypothesized, we observed that the
1/f, which is found to be related to arousal levels in humans, also links
to cybersickness. For example, Figure 4 shows the extracted 1/f feature
and the motion level with the reported continuous sickness severity of
users during the VR task. Although the motion pattern is largely ran-
dom, the users’ sickness levels show a strong correlation (r=0.75±0.10)
with the 1/f feature. Also, since the extracted 1/f feature stems from the
power spectrum density, it is more robust towards motion artifacts than
raw EEG signals as visible also in Figure 4. This suggests that EEG
provides valuable insights into understanding cybersickness compared
to inertial measurements–even though they remain commonly used.

4.3 Estimating Cybersickness
To estimate users’ cybersickness levels in VR environments, we primar-
ily used two estimators. After calculating the power spectral density
using the proposed method, we input the TR-PSD along with kinematic
data into a neural network model to detect cybersickness.

For the kinematic data, we extracted the following features without
any filtering, similar to previous works [41]. We computed the first
difference between two consecutive segments of the head position and
the head rotation (i.e., x, y, z, roll, pitch, and yaw). We also computed
the Euclidean norm of the head position and the head rotation to extract
more information about the head movements in the VR environment.
We then computed the first difference of the head speed and rotation.
The overall algorithm with the processing steps are given in Algorithm 1.
Lastly, we feed these extracted kinematic and EEG features together to
the designed neural network.
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Fig. 4: An example showing total acceleration (gray line; primary y-
axis), 1/f values extracted from processed PSDs (red line; secondary
y-axis, right), and the user’s cybersickness level (blue line; secondary
y-axis) during a 10-minute VR immersion.

4.3.1 Architecture
We design a neural network architecture that includes one encoder for
each modality: one for EEG and one for inertial measurements. Each
encoder is used to extract modality-specific features from the inertial
measurements and spectral density of EEG signals independently be-
fore concatenating them to estimate the sickness level of participants.
The input to our neural network architecture is processed following
Algorithm 1 for both the EEG signals and the inertial measurements.
Each encoder consists of a convolutional layer of 16 kernels of size
of 2 and an LSTM cell with a hidden size of 32. We apply batch
normalization [21] after each convolutional layer. We concatenate the
features extracted from the two encoders and pass them through three
fully connected linear layers with sizes of 10, 20, and 40, respectively.
We use the ReLU activation function between linear layers, with a sig-
moid activation applied at the end to predict the participant’s real-time
sickness response based on the PSD and kinematic features. We also
give a schematic illustration of our architecture in Figure 5.

4.3.2 Training
We used the Adam optimizer [37] with β1 = 0.9, β2 = 0.999, and a
mini-batch size of 8. The learning rate is initialized to 0.0001 and

Algorithm 1 Processing of signals with TR-PSD extraction

Require: EEG signals xn and inertial measurements gn of recording i, and
discrete prolate sequences ξ .

Ensure: Chunked Power Spectral Density ρ̄i
1: x′i← butterworth(xi)

2: ρ ′i ← log10

(∣∣∑N−1
n=0 ξnx′ie

− j2π f n∆t
∣∣2) ▷ Multitaper PSD calculation

3: for idx in enum windows(1, N, window size=3s) do
4: idx+← next window(idx)
5: idx−← prev window(idx)
6: λ ,α ← gi[idx] ▷ λ is linear and α is angular motion 3-vectors
7: s←∥λ∥2

2 ▷ linear speed i.e.
√

x2 + y2 + z2

8: w←∥α∥2
2 ▷ angular speed i.e.

√
r2 + p2 + ya2

9: λ−,α−← gi[idx−]
10: s− ←∥λ−∥2

2
11: w− ←∥α−∥2

2

12: k(idx)i ← 16-tuple
[

λ α s w
(λ −λ−) (α−α−) (s− s−) (w−w−)

]
13: ρ̄

(idx)
i ← 1

3 (ρ
′
i [idx+]+ρ ′i [idx]+ρ ′i [idx−])− 1

3 (ρ
′
i [2]+ρ ′i [1]+ρ ′i [0])

14: end for
15: ki←{k(idx)i }#indices

idx=0

16: ρ̄i←{ρ̄(idx)
i }#indices

idx=0
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Fig. 5: The used ConvLSTM model architecture for predicting the
cybersickness level in virtual reality. The proposed architecture has
two inputs, the difference in PSD and the kinematic features, and one
output for the sickness level.

reduced by half when the validation loss stops improving for 10 consec-
utive epochs. The training continues until 15 successive epochs without
validation performance improvements. The best model is chosen as the
lowest L1 loss on the validation data.

It is important to note that during our experiments, we strictly follow
the leave-one-subject-out cross-validation approach to evaluate the
model’s ability to generalize. This ensures that if the models overfit
the training data, their performance will decline on unseen testing
subjects. This ensures robust evaluation and minimizes overfitting
risks associated with the training data. This technique is advantageous
in real-world scenarios because our model does not require person-
specific data for calibration or training of the models. We trained the
models three times for each left-out participant with different seeds and
computed the performance as the average across them.

4.4 Model evaluation
We compare our method with existing models designed for cybersick-
ness detection. We further investigate the impact of various components
in our proposed method, with a particular focus on investigating how the
choice of applying spectral density estimation and kinematics input in-
fluences performance. To evaluate the performance of these approaches,
we have used multiple metrics to analyze their ability to detect and
estimate participants’ sickness levels within the VR environment. First,
we used two commonly used regression metrics to investigate how well
the models follow the sickness level continuously in real time. The
continuous sickness holds significant importance as it provides insight
into users’ real-time cybersickness levels, distinguishing our approach



from previous techniques that often require prolonged input before
making a decision about the sickness level [35]. This real-time tracking
capability is crucial for addressing and mitigating cybersickness, en-
hancing user experience, and the overall effectiveness of VR systems.
These metrics are defined as follows:

MSE =
1
M

M

∑
i=1

(si− s̃i)
2 (6)

MAE =
1
M

M

∑
i=1
|si− s̃i|, (7)

where M is the total number of segments of a participant in testing
data, si is the response on the controller in the ith segment about feeling
symptoms of sickness, s̃i is the model prediction for the sickness level.

Furthermore, we calculated the accuracy of the models to evaluate
if they can detect specific periods of cybersickness changes. Thus, we
treated the participants’ controller response as a binary category, where
the patient is considered to be sick when it is above one degree in a
neighborhood of a window, which is calculated as below:

Acc =
TP+TN

TP+TN+FP+FN
, (8)

where TP represents the number of segments where both the user’s
joystick response and the model’s prediction indicate sickness.

4.5 Real-time and SSQ Correlation Analysis
We computed the correlation between users’ real-time response to the
VR environment and their SSQs [55] that is collected at the end of
the experiment to investigate the dependency between users’ feelings
of sickness and their embodiment in the virtual environment. Mainly,
we investigated the Nausea, disorientation, and oculomotor-related
subscores and the total score. In Table 1, micro-correlation is the corre-
lation between each experiment conducted among thirteen users and
macro-correlation is a user-wise correlation, where different experi-
ments for each user are combined by taking the mean.

micro-Correlation macro-Correlation
Nausea 56.9479% 48.7619%

Oculomotor
discomfort 58.6206% 56.3388%

Disorientation 72.8282% 75.5338%
Total 69.8129% 70.2778%

Table 1: The correlation between embodiment and sickness

The significant correlation (p < 0.005) between the users’ controller
response and their overall reported feelings of sickness (nausea, ocu-
lomotor discomfort, and disorientation) holds valuable insights. It
suggests that users who experienced more intense symptoms (higher
scores on the questionnaire) also engaged with the joystick more fre-
quently or intensely. This finding strengthens the validity of real-time
cybersickness response measurement as a potential tool for capturing
and quantifying the subjective experience of sickness during the exper-
iments. Moreover, it establishes a direct link between verbal reports
(questionnaire) and a behavioral measure (joystick activity), offering a
more comprehensive understanding of users’ experiences.

5 RESULTS AND DISCUSSION

We present the main results of our proposed approach compared to
previous methods in Table 2. Overall, our proposed method demon-
strates a substantial performance improvement, reaching up to 10–15%,
in detecting and estimating the participants’ cybersickness level. The
results show that methods solely based on kinematic features fail to
detect and estimate cybersickness levels. Furthermore, it is evident
that the preprocessing step employed for extracting the power spectral
density of EEG signals using the modified multitaper significantly im-
proves performance. Notably, applying the spectral density estimation
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Fig. 6: The plots show how the cybersickness level of participants
changes continuously in the virtual reality environment. The maximum
value of sickness level changes from 0.1 to 0.85 between people. More-
over, Figure 6b shows the continuous changes in sickness level for a
participant during the experiment.

transformation increases the performance close to ≈ 20%, whereas
incorporating information about the acceleration and rotation of the
headset, commonly used in cybersickness detection literature, only in-
creases approximately 5–6%. Moreover, adding the kinematics feature
together with the raw EEG signals decreases the performance of the
models. This implies that incorporating extra kinematic data might in-
troduce noise or redundancy, particularly when the information comes
from other modalities that do not explicitly relate to cybersickness,
such as motion artifacts from raw EEG signals, leading to a decrease in
the overall estimation performance.

5.1 Individual variation in cybersickness

We investigated the variation in cybersickness levels between partici-
pants in Figure 6. While all subjects were exposed to the same sequence
of frames (i.e., videos) in the virtual reality environments, their reaction
to the VR immersion and their cybersickness level differ significantly
from person to person. For example, Figure 6a shows that the maxi-
mum sickness level reached by participants changes from 0.1 to 0.8
while the standard deviation of each session also reaches to 0.4. In
other words, the participants’ reaction to the VR immersion is dynamic
and subjective. Therefore, although the sequence of frames can give
information about the sensory conflict and the possibility of cybersick-
ness level, it is not sufficient to detect subjective sickness differences
across participants. This result also emphasizes that the same virtual
environment can induce completely different responses in users for
cybersickness, underscoring the importance of considering subjective
measures, such as physiological signals, to accurately estimate the level
of sickness continuously during VR immersion. Moreover, using the
sequence of frames with a 3D convolutional neural network adds signif-
icant computational overhead to the overall monitoring system as the
model needs to process a high dimensional input compared to power
spectral densities or measurements from inertial units. This overhead
can drain the battery lifetime of VR devices while decreasing the user
experience significantly due to an increase in temperature [64].

5.2 Improvements from TR-PSD

During our experiments, we have also conducted several ablations to
observe the contribution of each component in the performance of the
overall method. One significant finding was that implementing our
modified PSD calculation (temporal-relative PSD as in Algorithm 1)
for sickness detection led to a performance increase of over 12% com-
pared to the commonly-used straightforward employment of multitaper
spectrum density estimation [61, 62]. This significant enhancement in
performance underscores the pivotal contribution of our approach to
cybersickness detection in VR.



Table 2: Performance comparison of our proposed method with ablations and prior works.

Work Input Pre-Processing Method MAE ↓ MSE ↓ Acc (%) ↑

Stereo-image Frames — 3D ConvNets 0.890 1.042 14.94

Kinematic
model [41]

IMU
Feature extraction
from head IMUs

Conv-LSTM 0.857 0.162 27.08

Ours IMU IMU Conv-LSTM 0.931 0.193 38.22
Ours EEG Filtering Conv-LSTM 0.841 0.182 44.32
Ours EEG Filtering+PSD Conv-LSTM 0.751 0.143 58.97
Ours EEG Filtering+TR-PSD Conv-LSTM 0.620 0.109 69.35
Ours EEG+IMU Filtering+IMU Conv-LSTM 0.862 0.190 43.42

Ours EEG+IMU Filtering+PSD+IMU Conv-LSTM 0.745 0.163 64.53

Ours EEG+IMU Filtering+TR-PSD+IMU Conv-LSTM 0.638 0.092 76.83
* TR-PSD refers to the proposed modified PSD calculation while considering the temporality in VR environments.

5.3 Window Length

We conducted an ablation study to investigate the impact of different
window lengths for EEG signal processing on model performance.
As shown in Table 3, the best performance was observed with a 3-
second window, yielding a mean absolute error (MAE) of 0.638, a
mean squared error (MSE) of 0.092, and an accuracy of 76.83%. Ex-
tending the window length to 5 seconds provided a slight improvement
in MAE (0.632), but overall performance decreased, particularly in
terms of MSE (0.143) and accuracy (75.25%). When using window
lengths beyond 5 seconds, the model’s performance further deterio-
rated, as indicated by a decrease in accuracy and higher error metrics
at a 10-second window. These results suggest that shorter windows
(around 3 seconds) are optimal for capturing the temporal dynamics of
cybersickness in VR environments, whereas longer windows may fail
to account for the rapid changes in users’ symptoms.

Table 3: Ablation study on window length for EEG signals

Window Length
(seconds)

MAE MSE Acc (%)

1 0.711 0.783 57.03
3 0.638 0.092 76.83
5 0.632 0.143 75.25
10 0.675 0.394 62.13

5.4 Different VR Hardware

To evaluate the system’s performance across different VR hardware,
we conducted an additional experiment with one subject using the
HTC Vive Pro 2 headset. Following the same experimental procedure,
we trained the same model from random initilization using data from
the other subjects and tested it on the this subject. The cybersickness
detection accuracy reached 72%, demonstrating the system’s capability
to generalize across different VR hardware devices as well. Our model
relies on IMU signals from the VR device. However, for the EEG
data, we used the same device in all experiments. Future work can
investigate the performance of the system when using different EEG
devices to further evaluate its generalizability.

6 SYSTEM OVERHEAD

Our algorithm reduces the dimensionality of the data and, subsequently,
also the computational overhead by representing raw EEG signals as
power spectral densities. Further, our approach reduces the number
of modalities needed for cybersickness detection, enhancing both the
efficiency and user experience of VR systems.

We evaluate the memory footprint and energy consumption of our
method on the EFM32 Giant Gecko ARM Cortex-M3-based 32-bit mi-
crocontroller (MCU). For the multitaper implementation, we follow the
approach described in [10], adjusting the taper length and parameters
to suit our specific application. It has a 1024 kB flash and 128 kB of
RAM with CPU speeds of up to 48 MHz, possessing minimal features.

Table 4 shows execution time, energy consumption, and required
memory for each operation on our designed system. The operations are
implemented and deployed to the target device using MATLAB (Coder
Toolbox Release R2022b, The MathWorks, Inc, USA).

The overall execution time for an EEG segment, which is the segment
length we use during our experiments takes 246 ms with 3.3 mJ energy
consumption. Our proposed method requires a minimum RAM capacity
of 128 KB, when the memory is allocated separately for each process.
Since the overall execution time is less than the input segment, the
proposed system enables continuous monitoring of the cybersickness
level in real-time. Consequently, our method ensures high performance
while adhering to the resource efficiency requirements, in terms of
energy and memory.

7 BENEFITS, LIMITATIONS, AND FUTURE WORK

Our designed experiments with the proposed method shed light on mul-
tiple questions regarding the cybersickness in VR environments. First,
our findings underscore the significance of considering both subjective
and objective measurements when estimating and detecting cybersick-
ness in virtual reality environments. Specifically, our results suggest
that EEG signals are informative about the sickness level of users when
the right pre-processing steps are applied to eliminate the noise and mo-
tion artifacts. In contrast, the stereo-image and only kinematics-based
techniques can fail to detect and estimate sudden changes in sickness
levels, especially considering the subjective responses of users to the
VR. Thus, we believe that there is a huge room in future systems to
design and prioritize different modalities, catering to diverse VR in-
teraction needs. Additionally, advancements in VR technology should
aim to address challenges associated with inside-out tracking, such as
self-occlusion and limited tracking accuracy, to ensure consistent and
reliable user experiences across different VR setups.

Furthermore, our study highlights the potential of neurophysiological
markers as valuable indicators of cybersickness levels in VR environ-
ments. By correlating cybersickness with established neurophysiolog-
ical markers, we bridge the gap between the effects of cybersickness
on brain activity and existing research in neurophysiology. Our pro-
posed method, leveraging a tailored EEG processing technique, demon-
strates superior accuracy and reliability in continuously estimating
cybersickness levels, paving the way for more effective interventions
and improved user well-being in VR experiences.

Moreover, our comprehensive evaluation and ablation studies show
the efficacy of our proposed method, surpassing current state-of-the-art



Table 4: Memory footprint, execution time, and energy consumption of the system components.

Operations
Exe.

Time (ms)

Avg.

Energy (µJ)

Flash Memory

Footprint (KB)

RAM Memory

Footprint (KB)

Filtering EEG 18.2 2.03 2.41 9.67

Multitaper PSD 25.3 303 6.91 6.7

Linear speed calc. 3.01 92.3 4.43 32.4

Angular speed calc. 3.85 98.6 7.9 19.3

PSD NN 112 1.5k 490 95

IMU NN 83.4 1.4k 312 67

Overall 245.76 3395 ≤ 512 KB ≤ 128 KB

approaches while decreasing the sensor modalities for a better battery
lifetime and enhanced user experience. By openly sharing our analysis,
results, and dataset, we contribute to the advancement of reproducible
and generalizable research in the field of cybersickness detection.

Our study presents a significant step towards real-time cybersickness
detection in VR using EEG and head motion. However, limitations
offer valuable insights for future work. The relatively small sample size
(N=16) with a narrow age range necessitates further research with larger
and more diverse participant pools to investigate potential correlations
between cybersickness and demographic factors, including gender, age,
and potentially other characteristics [46]. Additionally, the controlled
virtual environment limits the method’s evaluation in more complex
VR scenarios that might influence cybersickness differently. While our
approach utilizes specialized EEG processing techniques, exploring
advanced feature extraction and selection methods holds promise for
enhanced cybersickness detection accuracy, potentially leading to the
identification of true and general markers of susceptibility. Finally,
the publicly available dataset offers a valuable resource for further
exploration of cybersickness detection using EEG and head motion data,
enabling researchers to refine existing methods or develop entirely new
approaches, particularly those focused on understanding influences.

A major limitation of our study lies in the use of relatively limited
virtual environments. To address this, future studies should aim to
conduct experiments across a broader spectrum of virtual environments,
encompassing various levels of complexity, interaction modalities, and
sensory stimuli. By exploring cybersickness detection in diverse virtual
settings, including object manipulation and diverse movement modal-
ities, we believe that the importance of neurophysiological markers
can be understood more comprehensively while refining the detection
and monitoring methods accordingly for developing better intervention
techniques. For example, in our study, we included a baseline measure-
ment during the initial non-interaction phase of VR, where participants
were passively exposed to the environment without active interaction.
However, incorporating non-VR EEG measurements could provide a
valuable comparison to better understand VR-induced cybersickness
through neurophysiological markers. Additionally, investigating the
impact of environmental factors such as visual fidelity, interactivity,
and spatial layout on cybersickness susceptibility can provide valuable
insights for designing more comfortable and immersive VR experi-
ences. Overall, expanding the scope of experimental environments will
contribute to the development of robust and adaptable cybersickness
detection techniques that cater to the diverse needs and preferences of
VR users.

An important aspect of our study is the 10–15-minute break between
sessions, which included a relaxation period. This duration was chosen
based on findings suggesting it is generally sufficient for recovery from
cybersickness [68]. However, this duration may not fully eliminate
residual fatigue or cybersickness in all participants. Future studies could
explore the use of longer breaks or scheduled sessions on separate days
to further minimize carry-over effects.

8 CONCLUSION

We have introduced a novel processing approach tailored to extracting
meaningful features from EEG signals in the VR environment, which
enables continuous estimation of cybersickness. Unlike traditional
methods, our approach of processing EEG and head motion signals
leverages a multitaper-based technique to achieve superior spectral
resolution and reduced variance to eliminate noise and motion artifacts.
We have shown that this results in more accurate and reliable predictions
of cybersickness levels. We have also established a valuable connection
between participants’ dynamic cybersickness levels and physiological
markers that are commonly used in neurophysiology, which shed light
on the effect of cybersickness on brain activity. Through multiple
evaluations, including ablation studies on our recorded cybersickness
dataset, we have demonstrated that our method outperforms current
state-of-the-art methods for cybersickness detection and estimation.
Importantly, our method enhances the overall user experience and
battery time by reducing the number of sensor modalities required and
the computational demand.

To foster future research with a method focus in the challenging and
important domain of cybersickness detection, we make our complete
analysis, results, and models available publicly. We also release our
dataset to support better opportunities for replication and validation of
our findings by the broader research community. This way, we hope
to accelerate advancements in cybersickness detection and support
developments that may eventually even be capable of anticipating
and preventing cybersickness and its symptoms from occurring in
Virtual Reality and Mixed Reality more broadly, making these platforms
available for prolonged use to a broader part of the population.
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